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A SCHEME FOR NUMERICAL INTEGRATION OF THE EQUATIONS OF MOTION ON AN 
IRREGULAR GRID FREE OF NONLINEAR INSTABILITY 
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In the long-term numerical integration of the equations 
of motion required for medium-range weather forecasting, 
the study of the atmospheric general circulation, and other 
applications, the finite difference formulation of the non- 
linear terms may give rise to a special type of instability. 
This difficulty was first noted in the meteorological litera- 
ture by Phillips [4]. Phillips pointed out that a unique 
feature of this instability is that it cannot be suppressed 
by using shorter time steps. Arakawa [l] has made a 
very valuable contribution in showing that a numerical 
scheme which retains certain integral properties of the 
continuous equations eliminates nonlinear instability.* 
It must be pointed out that the formulation proposed by 
Arakawa does not guarantee accuracy. This is assured 
only if all the significant energy of the flow is in scales of 
motion that are large enough to  ‘be adequately resolved by 
the numerical grid. A system free of nonlinear instability 
has the merit, however, that relatively minor truncation 
errors in grid-scale motions do not lead to large spurious 
increases in energy. 

The work of Arakawa [I] has been extended by Lilly 
[ 2 ] .  Lilly has devised a method of numerically integrating 
the primitive equations which, except for time truncation, 
exactly conserves finite difference expressions for the 
kinetic energy of both the divergent and nondivergent 
components of the flow. This method is currently being 
used in an extension of investigations of the atmospheric 
general circulation initiated by Smagorinsky [ 5 ] .  

The present note is concerned with a generalization of 
the ideas of Arakawa [I] and Lilly [ 2 ] .  111 many applica- 
tions of the techniques of numerical weather forecasting 
to  other geophysical problems it may be necessary to use 
grids with irregularly spaced points. For example, it 
may be important t o  join two different types of nets 
together, or the peculiar geometry of the region under con- 
sideration requires an irregular arrangement of points. 

Consider the following equation 

ba -+V*  Va=Q bt 

v .  v=o (2) 

‘That “nonlinear instability” is somewhat of a misnomer has been pointed out by 
Miyakoda [3] who showed that a similar instability occurs for linear equations with 
XWACQIStmt coefficients. 

a is a scalar quant,ity and V=ui+vj+wk. 
The 

normal velocity at  the outer surface of R is taken to be 
zero. The region R is subdivided into Jsubvolumes, each 
of volume pr. If ai is the average value of the scalar a 
in thej th  subvolume, the total amount of a is given by 

Let the total region of interest be denoted as R. 

J 

j = l  
C ajrj=Il .  (3) 

A lower bound on the total variance of a is given by 
J 

j = 1  
(4) 

Combining (1) and (2) and integrating over the sub- 
volume, Ti ,  results in 

r5 -- - ss, V,a,ds 
at 

where use has been made of the divergence theorem. 
V, and as are the normal velocity and the local value 
of a on the surface of the subvolume, respectively. In  
the finite difference approximation of the right-hand 
side of (5), the surface is considered to consist of K j  
plane interfaces of area Ak,j .  The average normal 
velocity for each interface is given by v k , r .  The value 
of CY on the interface is approximated by ( ( Y j + C Y k ) / 2  

where (ilk is the average value of a in the subvolume 
adjacent to the kth surface. With these substitutions 
( 5 )  becomes 

Ki 
T i  *=-c Vk,j(aj+ak)Ak,j/2. (6) bt k = l  

The corresponding continuity equation is 

We wish to show that (6) and (7) lead to an exact con- 
servation of Il  and I2 except for truncation caused by 
differencing with respect to  the time coordinate. 

Summing over all the subvolumes, we note that the 
time change of Il is 
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CORRECTION 

Vol. 93, October 1965, p. 582:  The first of the expressions appearing 
three lines below equation (25)  should be: 

u, 
5 

Application of (6 )  to the left side of (11)  and (12)  will 
guarantee that the finite difference expressions for the (’) 

, 

It can be seen that the terms on the right side of (8) 
fall into two groups. Those terms which involve inter- 
faces between subvolumes occur in couples which are 
equal and opposite. These terms cancel. The remaining 
terms are due to  surfaces which lie on the outside of R. 
These terms are zero since the normal velocity along 
the outer boundaries of R is zero. 

On the other hand, the change of Iz is given as 

This may be rewritten as 

(9)  

The first term on the right vanishes through the con- 
tinuity relation (7).  The same argument applied to (8) 
is also true for the second term ,of (10). All contri- 
butions for interfaces will occur as couples, which are 
equal and opposite. The remaining terms lie on the 
outer boundaries of the region R. 

To see how the general formula ( 5 )  and (6) might 
actually be applied, consider the following equations of 
motion for an incompressible, homogeneous fluid under 
rotation, 

- b u+V.  (VU)=-- 1 -+F”+fv bP 
bt Po b x  

1 bP 
bt P O  by 
- b V f V .  (Vv)=-- -+FW--fu 

bP 
a2 

Pog” -- 

advective terms will not alter the finite-difference equiv- 
alent of the kinetic energy integral 

provided the continuity relation ( 6 )  is used as the diag- 
nostic relation to  determine the vertical component. 
This will eliminate the possibility of spurious changes 
in the energy level associated with the nonlinear nu- 
merical instability described by Phillips [4]. 
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